The Libyan Journal of Science (An International Journal): Volume 20, 2017

تقدير عدد سكان ليبيا السنوي بطريقة توفيق دالة الانحدار كثيرة الحدود

البهلول عمر شلابي قسم الإحصاء - كلية العلوم/جامعة طرابلس b.shalabi@uot.edu.ly

المستخلص

تقدم هذه الورقة البحثية تقديراً لعدد سكان ليبيا السنوي باستخدام طريقة توفيق دالة الانحدار كثيرة الحدود وذلك خلال الفترة (1954 – 2016) بالاعتماد على بيانات التعدادات السكانية التي أجريت خلال الفترة (1954 – 2006) وباستخدام البرمجية الإحصائية SPSS الإصدار رقم 20.

الكلمات الدالة: تقدير، تعداد، سكان ليبيا، دالة الانحدار كثيرة الحدود.

Abstract

This paper provides an estimate of the number of Libya's annual population, using the method of fitting polynomial regression function, during the period (from 1954 to 2016) based on the population censuses conducted during the period (from 1954 to 2006) and using the statistical software IBM SPSS version 20.

المقدمة

تعتبر البيانات السكانية الركيزة التي تعتمد عليها عملية إعداد خطط التنمية الاقتصادية والاجتماعية في مختلف المجالات، وتزداد أهمية هذه البيانات في الظروف الحالية في ليبيا لأنها تعد الأساس لعملية التخطيط العلمي السليم.

أغلب مصادر البيانات عن عدد السكان وتوزيعهم الجغرافي يتم الحصول عليها عادة من التعدادات السكانية، وهذه تعد غير كافية وذلك لأن التعدادات تجري عادة كل عشر سنوات، في حين نجد أن القائمين

Accepted for Publication: 30/5/2017

على وضع برامج وخطط التنمية الاقتصادية والاجتماعية يحتاجون دائما إلى بيانات أكثر تفصيلاً بشكل سنوي مستمر عن عدد السكان وتركيبهم العمري و النوعي وغيرها من الخصائص، وذلك من أجل تلبية متطلبات واحتياجات المجتمع من الخدمات الصحية والتعليمية والاقتصادية في القطاعات الخدمية والإنتاجية على حد سواء ونتيجة لعدم توافر هذه البيانات في التعدادات بشكل سنوي مستمر، فإنه يتم اللجوء إلى التقديرات السكانية في مستوياتها المختلفة الحالية والمستقبلية والمعتمدة على الأساليب الإحصائية المتاحة في التنبؤ السكاني والتي تعد من المصادر المهمة في توافر بيانات عن واقع عدد السكان وخصائصه المختلفة للمدد الزمنية التي لم تجرى فيها التعدادات أو المسوحات بالعينة إضافة إلى كونها قاعدة من القواعد التي تبنى عليها الخطط والبرامج المستقبلية التي تسعى لتلبية متطلبات السكان في القطاعات المختلفة.

ونظراً لقيام مصلحة الإحصاء والتعداد في الوقت الحالي بإجراء تقديرات سنوية لأعداد سكان ليبيا خلال الفترة من سنة 1996 إلى سنة 2015 فقط فقد جاءت هذه الورقة البحثية لتوفير تقديرات لعدد سكان ليبيا السنوي منذ سنة 1954 وحتى سنة 2016 وذلك باستخدام طريقة توفيق دالة الانحدار كثيرة الحدود، حيث تعد هذه التقديرات حجر الأساس في بناء تنمية المجتمع الليبي في مختلف المجالات الاقتصادية والاجتماعية.

أهداف البحث

تهدف هذه الورقة البحثية إلى تقدير عدد سكان ليبيا السنوي باستخدام طريقة توفيق دالة الانحدار كثيرة الحدود خلال الفترة الزمنية (1954 – 2016) وذلك بالاعتماد على بيانات التعدادات السكانية التي أجريت خلال الفترة (1954 – 2006) ومقارنة هذه التقديرات بالتقديرات التي أجرتها مصلحة الإحصاء والتعداد خلال الفترة من سنة 1996 إلى سنة 2015.

طرق تقدير العدد السنوي للسكان

توجد هناك عدة طرق تستخدم لتقدير عدد السكان لمجتمع إنساني (Wachter, 2014) وسنقوم فيما يلي باستعراض أهم هذه الطرق.

أولاً: طريقة الإحصاءات الحيوية

إذا جعلنا P_n ترمز لحجم المجتمع السكاني بعد n من السنوات، P_n ترمز لحجم المجتمع السكاني في آخر تعداد سكاني، B ترمز لإجمالي عدد المواليد خلال الفترة n من السنوات، و m ترمز لصافي الهجرة خلال الفترة n من السنوات، و m من السنوات، وفقاً للمعادلة التالية:

$$P_{n} = P_{1} + B - D - M$$

تسمى هذه المعادلة بمعادلة التوازن.

ثانياً: طربقة الدوال الرباضية

بسبب الأخطاء والنقص في البيانات التي تتعلق بالسكان فإن طريقة الإحصاءات الحيوية لا يمكن الاعتماد عليها كلياً في تقدير عدد السكان، لذلك توصل العلماء في مجال التحليل السكاني إلى طريقة أفضل وهي طريقة استخدام الدوال الرياضية مثل الدالة العددية والهندسية والأسية (بن عامر، 2005، أفضل وهي طريقة منا يلي شرح مبسط ومختصر لأهم الدوال الرياضية المستخدمة عادة في تقدير عدد السكان وذلك باستخدام تعدادين سكانيين لحساب معدلات النمو ومن ثم تقدير عدد السكان السنوي في المستقبل.

1 - الدالة العددية

تستند هذه الدالة على افتراض أن السكان يتزايدون سنوياً بمقدار عددي ثابت وهذا يعني ثبات التغير السنوي في نمو السكان وفقاً لمتوالية عددية وهذا أمراً قد لا يكون واقعياً على المدى الطويل. على افتراض أن P_1 ترمز لعدد السكان في التعداد السابق أن P_1 ترمز لعدد السكان في التعداد السابق لأحدث تعداد (التعداد القديم)، m ترمز لعدد السنوات بين التعداد القديم والتعداد الحديث، فإن معدل النمو السكاني السنوي، R ، يحسب وفقاً للصيغة التالية:

$$R = \frac{P_1 - P_0}{m P_0}$$

ولتقدير عدد السكان في سنة معينة تأتى بعد سنة التعداد الحديث نستخدم المعادلة التالية:

$$P_a = P_1(nR+1)$$

ولتقدير عدد السكان في سنة معينة تقع بين سنتي التعداد الحديث والتعداد السابق له نستخدم الصبيغة التالية:

$$P_{\scriptscriptstyle b} = P_{\scriptscriptstyle 0}(kR+1)$$

حيث:

ترمز إلى عدد السكان في آخر تعداد (التعداد الحديث). $P_{\scriptscriptstyle 1}$

ترمز إلى عدد السكان الذي نرغب في تقديره في سنة التقدير التي تقع بعد سنة إجراء أحدث P_a تعداد.

ترمز إلى عدد السكان الذي نرغب في تقديره في سنة التقدير التي تقع بين سنتي التعداد الحديث والتعداد السابق له.

. ترمز إلى معدل النمو السنوي بين التعداد الحديث والتعداد السابق له R

. ترمز إلى الفترة الزمنية بين سنة التعداد الحديث وسنة التقدير n

. ترمز إلى الفترة الزمنية بين سنة التعداد القديم وسنة التقدير k

من عيوب الدالة العددية لتقدير عدد السكان افتراضها أن معدل النمو السنوي للسكان ثابت من سنة إلى أخرى.

2- الدالة الهندسية

شرح طريقة الدالة العددية يحسب معدل النمو السنوي بين سنتي التعداد الحديث والتعداد السابق له وفقاً للصبغة التالية:

$$R = \sqrt[m]{(P_1/P_0)} - 1$$

ولتقدير عدد السكان في سنة معينة تأتي بعد سنة التعداد الحديث نستخدم المعادلة التالية:

$$P_a = P_1(1+R)^n$$

ولتقدير عدد السكان في سنة معينة تقع بين سنتي التعداد الحديث والتعداد السابق له نستخدم الصيغة التالية:

$$P_{\scriptscriptstyle b} = P_{\scriptscriptstyle 0} (1+R)^{\scriptscriptstyle k}$$

من عيوب الدالة الهندسية لتقدير عدد السكان افتراضها أن معدل النمو السنوي للسكان ثابت من سنة إلى أخرى.

3- الدالة الأسية:

تستخدم هذه الطريقة لتقدير عدد السكان بحيث يكون معدل النمو السنوي للسكان متغير من سنة إلى أخرى عكس طريقة الدالة العددية والدالة الهندسية. باستخدام نفس الرموز السابقة فإن معدل النمو السكاني السنوي، R، يحسب وفقاً للصيغة التالية:

$$R = \frac{1}{m} \log_{e} (P_{1}/P_{0})$$

ولتقدير عدد السكان في سنة معينة تأتى بعد سنة التعداد الحديث نستخدم المعادلة التالية:

$$P_{a} = P_{1}e^{nR}$$

ولتقدير عدد السكان في سنة معينة تقع بين سنتي التعداد الحديث والتعداد السابق له نستخدم الصيغة التالمة:

$$P_{b} = P_{0}e^{kR}$$

ثالثاً: طربقة توفيق الدوال

توجد هناك عدة دوال تستخدم في تقدير عدد السكان في المستقبل اعتماداً على أعداد السكان لمجتمع إنساني لسلسلة من السنوات. من أمثلة هذه الدوال الدالة الأسية المعدلة، دالة فومبير، الدالة اللوجستية (بن عامر، 2005، 156). ولكننا سوف نتطرق في هذه الورقة فقط إلى طريقة تقدير عدد السكان بتوفيق دالة الانحدار كثيرة الحدود من الدرجة الثانية أو أعلى.

طريقة توفيق دالة الانحدار كثيرة الحدود من الدرجة الثانية أو أعلى

استخدمت طريقة توفيق دالة الانحدار كثيرة الحدود من الدرجة الثانية أو أعلى لأول مرة في تقدير عدد سكان الولايات المتحدة الأمريكية في سنة 1891م من قبل العالم الإحصائي بريتشت (1891). ولتطبيق هذه الطريقة يجب أن يكون لدينا أعداد السكان لسلسلة من التعدادات لا تقل عن ثلاثة تعدادات. والصورة العامة لدالة الانحدار كثيرة الحدود من الدرجة q تكون كالتالي:

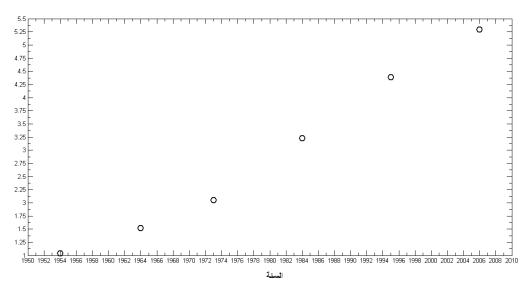
$$\hat{P} = a + b_1 t + b_2 t^2 + \dots + b_q t^q$$

حيث \hat{P} ترمز لتقدير عدد السكان في سنة معينة t ، وكل من a ، وكل من b_q ،... ، b_q ثوابت يتم إيجادها باستخدام طريقة المربعات الصغرى.

تقدير عدد سكان ليبيا السنوى بطريقة توفيق دالة الانحدار كثيرة الحدود

تقدير العدد السنوي لسكان ليبيا خلال الفترة (1954- 2016)

سنتاول في هذا البند من الورقة البحثية بالشرح كيفية تقدير العدد السنوي لسكان ليبيا خلال الفترة من سنة 1954 إلى سنة 2016 وذلك بطريقة توفيق دالة الانحدار كثيرة الحدود حيث سيتم استخدام نتائج التعداد العام للسكان التي أجريت بليبيا خلال السنوات: 1954، 1964، 1973، 1984، 1995 و 2006 والمبينة في جدول 1 وشكل 1 أدناه.


جدول 1. نتائج التعداد العام للسكان التي أجريت بليبيا خلال الفترة (1954-2006)

عدد السكان (بالمليون نسمة)	سنة التعداد	عدد السكان (بالمليون نسمة)	سنة التعداد
3.231059	1984	1.041599	1954
4.389739	1995	1.515501	1964
5.298152	2006	2.052372	1973

وبناءً على الشكل 1 أسفله فقد تم اعتماد دالة الانحدار كثيرة الحدود من الدرجة الثالثة لتقدير عدد السكان السنوي بين سنوات التعداد والسنوات التي بعد تعداد سنة 2006، حيث استخدمت البرمجية الإحصائية IBM SPSS الإصدار رقم 20 لتنفيذ عملية تقدير معالم الدالة (Field, 2013). كما تم استخدام البرمجية في إيجاد تقدير لعدد سكان ليبيا السنوي خلال الفترة من سنة 1954 إلى 2016 حيث تم الحصول على النتائج المبينة في ملحق 1. النتائج أظهرت أن الدالة التكعيبية التالية مناسبة:

$$\hat{P} = 1.055382 + 0.005033t + 0.003046t^2 - 0.000031t^3$$
(0.007) (0.781) (0.052) (0.073)

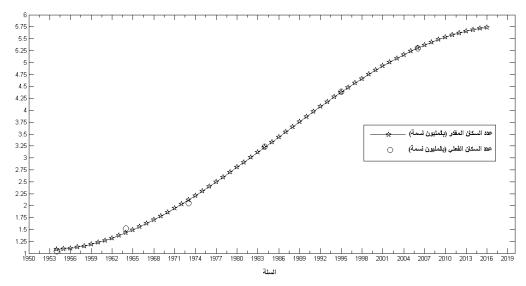
حيث \hat{P} ترمز لعدد السكان المقدر في سنة معينة و t ترمز للسنة التي نود تقدير عدد السكان فيها بحيث \hat{P} نجعل t=1 لتشير لسنة t=3 وهكذا لبقية سنوات السلسلة حتى نصل لسنة 2016 حيث نجعل t=3

شكل 1. نتائج التعداد العام للسكان التي أجريت بليبيا خلال الفترة (1954-2006)

ولكننا نلاحظ في الدالة التكعيبية أعلاه أن معامل t في الدالة غير معنوي لأن قيمة مستوى المعنوية المشاهد (p-value) قيمة كبيرة (0.781) لهذا سنستبعد t من الدالة وسنعتمد المتغيرات المستقلة الأخرى بالدالة ثم نقوم بإعادة تقدير لمعالم الدالة التكعيبية بدون المتغير t فنتحصل على النتائج المبينة في ملحق t.

واضح من النتائج المبينة في ملحق 2 أن الدالة المقترحة مناسبة جداً حيث نجد أن معاملات الدالة جميعها معنوية وقيمة معامل التحديد المصححة $R_{adj}^2=0.998$ وبالتالي فإن أفضل دالة انحدار كثيرة حدود تمثل العلاقة بين عدد السكان السنوي، P ، والسنة، t ، تكون على الصورة التالية:

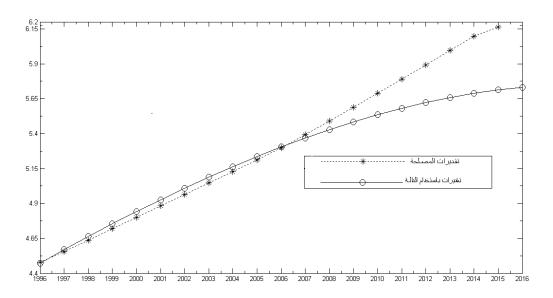
$$\hat{P} = 1.076630 + 0.003265 t^2 - 0.000033 t^3$$
(0.000) (0.000) (0.002)


نتائج تقدير عدد سكان ليبيا السنوي خلال الفترة من سنة 1954 وحتى سنة 2016 باستخدام الدالة المقترحة بجانب تقديرات مصلحة الإحصاء والتعداد من سنة 1996 وحتى سنة 2015 مبينة في الجدول 2 والشكل 2 والشكل 3 والش

جدول 2. العدد الفعلي والمقدر (بالمليون نسمة) لسكان ليبيا خلال الفترة (1954 – 2016)

العدد المقدر للسكان من	العدد المقدر للسكان			
قبل مصلحة الإحصاء	باستخدام دالة الانحدار	العدد الفعلي للسكان	t	السنة
والتعداد	كثيرة الحدود			
_	1.079862	1.041599	1	1954
_	1.089424	•	2	1955
_	1.105117	•	3	1956
_	1.126742	•	4	1957
_	1.154100	•	5	1958
_	1.186991	•	6	1959
_	1.225217		7	1960
-	1.268577		8	1961
-	1.316873			1962
-	1.369906	906 .		1963
_	1.427476 1.515501		11	1964
_	1.489383 .		12	1965
_	1.555430	•	13	1966
_	1.625416	•	14	1967
_	1.699142	•	15	1968
_	1.776410		16	1969
_	1.857019		17	1970
_	1.940771	•	18	1971
_	2.027466		19	1972
-	2.116905	2.052372	20	1973

_	2.208889		21	1974
_	2.303218		22	1975
_	2.399694		23	1976
_	2.498117		24	1977
_	2.598287		25	1978
_	2.700007		26	1979
_	2.803075	•	27	1980
_	2.907294		28	1981
_	3.012464		29	1982
_	3.118385	•	30	1983
_	3.224859	3.231059	31	1984
_	3.331686		32	1985
-	3.438667		33	1986
_	3.545602		34	1987
_	3.652293		35	1988
_	3.758541		36	1989
_	3.864145		37	1990
_	3.968907		38	1991
_	4.072627		39	1992
-	4.175106		40	1993
-	4.276146		41	1994
_	4.375546	4.389739	42	1995
4.478531	4.473108		43	1996
4.553663	4.568632		44	1997
4.635625	4.661919		45	1998
4.717587	4.752770		46	1999
4.799549	4.840985	•	47	2000
4.881511	4.926366		48	2001
4.963474	5.008712		49	2002
5.045436	5.087826		50	2003
5.127398	5.163507	•	51	2004


5.209360	5.235556	•	52	2005
5.298152	5.303775	5.298152	53	2006
5.393325	5.367963	•	54	2007
5.490478	5.427922	•	55	2008
5.589289	5.483452	•	56	2009
5.689419	5.534355	•	57	2010
5.790518	5.580430	•	58	2011
5.892239	5.621479		59	2012
5.994241	5.657302	•	60	2013
6.096208	5.687701	•	61	2014
6.162356	5.712475	•	62	2015
_	5.731426		63	2016

شكل 2. العدد الفعلي والمقدر (بالمليون نسمة) لسكان ليبيا خلال الفترة (1954 – 2016) باستخدام دالة الانحدار كثيرة الحدود.

من خلال الشكل 3 نلاحظ أن تقديرات عدد سكان ليبيا السنوي خلال الفترة من سنة 1996 وحتى سنة 2005 باستخدام دالة الانحدار كثيرة الحدود المقترحة متوافقة تقريباً مع تقديرات مصلحة الإحصاء والتعداد ولكن خلال الفترة ما بعد سنة 2006 يوجد اختلاف واضح في تقدير عدد السكان السنوي وهذا ربما ناتج

عن افتراض المصلحة بأن اتجاه عدد سكان ليبيا السنوي هو اتجاه خطي عكس ما تفترضه دالة الانحدار كثيرة الحدود المقترحة.

شكل 3. العدد المقدر (بالمليون نسمة) لسكان ليبيا خلال الفترة من سنة 1996 وحتى سنة 2016 باستخدام تقديرات مصلحة الإحصاء والتعداد وباستخدام دالة الانحدار كثيرة الحدود.

شكر وتقدير

إلى الأستاذ عبد المجيد الرابطي، مدير إدارة الإحصاءات الاقتصادية والسكانية بمصلحة الإحصاء والتعداد، على تعاونه في توفير البيانات المتعلقة بتقديرات المصلحة للعدد السنوي لسكان ليبيا خلال الفترة من سنة 1996 وحتى سنة 2015.

المراجع

عبد الله بن عامر (2005). التحليل السكاني الرياضي، منشورات جامعة بنغازي، بنغازي.

- Field, A. (2013). Discovering Statistics Using IBM SPSS Statistic, 4th Ed., Sage, London.
- Pritchett, H. S. (1891). A Formula for predicting the population of the United States, American Statistical Association, **2**(14), 278-286.
- Wachter, K. W. (2014). Essential Demographic Methods, Harvard University Press, pp. 98–124.

ملحق 1

SPSS نتائج تقدير معالم دالة الانحدار كثيرة الحدود من الدرجة الثالثة باستخدام البرمجية الإحصائية الإصدار رقم 20

Curve Fit

Model Description

	11101	del Description	
Model N	ame		MOD_1
Depende	nt Variable	1	Pop
Equation	Į.	1	Cubic
Independ	lent Variable		t
Constant			Included
Vorioblo	Whose Velues Labo	el Observations in Plots	Unspecifie
v arrabic	whose values Labe	of Coset vations in 1 lots	d
Toleranc	e for Entering Terms	s in Equations	.0001

Cubic

Model Summary

R	R Square	Adjusted R Square	Std. Error of the Estimate
1.000	.999	.998	.081

The independent variable is t.

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	14.153	3	4.718	726.038	.001
Residual	.013	2	.006		
Total	14.166	5			

The independent variable is t.

Coefficients

-	Unstandardized		Standardized	t	Sig.
	Coefficients		Coefficients		
	В	Std. Error	Beta		
t	.005033	.016	.058	.317	.781
t ** 2	.003046	.001	1.980	4.226	.052
t ** 3	-0.000031	.000	-1.068	-3.487	.073
(Constant)	1.055382	.090		11.770	.007

ملحق 2

نتائج تقدير معالم دالة الانحدار كثيرة الحدود من الدرجة الثالثة بعد استبعاد t من الدالة باستخدام البرمجية الإحصائية SPSS الإصدار رقم t

Regression

Variables Entered/Removed^a

Model	Variables	Variables	Method
	Entered	Removed	
1	t3, t2 ^b		Enter

- a. Dependent Variable: P
- b. All requested variables entered.

Model Summary^b

Model	R	R	Adjusted R	Std. Error of the	Durbin-
		Square	Square	Estimate	Watson
1	1.000^{a}	.999	.998	.067449928	3.274

a. Predictors: (Constant), t3, t2

b. Dependent Variable: P

ANOVA^a

Model	Sum of Squares		Mean Square	F	Sig.
Regression	14.153	2	7.076	1555.407	$.000^{b}$
1 Residual	.014	3	.005		
Total	14.166	5			

a. Dependent Variable: P

b. Predictors: (Constant), t3, t2

Coefficients^a

M	Iodel	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
	(Constant)	1.076630	.050		21.612	.000
1	t2	.003265	.000	2.123	19.087	.000
	t3	-0.00033	.000	-1.156	-10.392	.002

a. Dependent Variable: P